Subnetting: Problem 2

(Page 30)

Number of needed subnets	1000	1000 is not a power of 2. Use 1024, the power of 2 above 1000. 2 to the power of what, will get you 1024 ? $2^{10}=1024$. The exponent of 10, means that we need to borrow 10 bits to get 1024 subnets.
Number of needed usable hosts	60	60 is not a power of 2. Use 64, the power of 2 above 60.
Network Address	165.100 .0 .0	(Subnet zero)
Address class	B	
Default subnet mask	255.255 .0 .0	
Custom subnet mask	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 1 9 2}$	We start at 255.255 .0 .0, and borrow 10 bits for the subnets. $11111111.1111111 . s s s s s s s s . s s 000000$ (s $=$ bits turned on)
Wildcard Mask	0.0 .0 .63	$(255-192=63)$ Block size $256-192=64$
Total number of subnets	1,024	$2^{10}=1024$
Total \# of host addresses	64	
Sum. of usable addresses	62	
Num. of bits borrowed	10	

What is the $15^{\text {th }}$ subset range?

- How many addresses must we add to the network address/subnet zero to jump to the $15^{\text {th }}$ subnet?
- For the $\mathrm{n}^{\text {th }}$ column, we subtract 1, to give us 14. (e.g. Subnet Number 14.)
- (Subnet number 14) x (64 addresses per subnet) $=896$ addresses to be added to subnet zero.
- Convert 896 into a dotted-decimal value, that can be added to subnet zero, using Base-256 conversion.

Thus $\underset{\text { (bax } 10)}{896}=\underset{\substack{0 \\ \text { (base } \\ \text { (outed decimal }}}{0.3 .128}$

Network Address (subset Zero)
0.0 .3 .128
$15^{\text {th }}$ Sublet Address $165 \cdot 100 \cdot 3 \cdot 128$
Add the wildcard mask to the network address to get the broadcast address.

