
Subnetting: Problem 2

Number of needed	1000	Use 1024, the power of 2 above 1000.
subnets		2 to the power of what, will get you 1024? $2^{10} = 1024$.
		The exponent of 10, means that we need to borrow 10 bits
		to get 1024 subnets.
Number of needed usable	60	60 is not a power of 2. Use 64, the power of 2 above 60.
hosts		
Network Address	165.100.0.0	(Subnet zero)
Address class	В	
Default subnet mask	255.255.0.0	
Custom subnet mask	255.255.255.192	We start at 255.255.0.0, and borrow 10 bits for the hosts.
		11111111.111111111.ssssssss.ss000000 (s=bits turned on)
Wildcard Mask	0.0.0.63	(255-192 = 63)
Total number of subnets	1,024	$2^{10} = 1024$
Total # of host addresses	64	
Num. of usable addresses	62	
Num. of bits borrowed	10	

What is the 15th subnet range?

- How many addresses must we add to the network address/subnet zero to jump to the 15th subnet?
- For the nth column, we subtract 1, to give us 14. (e.g. Subnet Number 14.)
- (Subnet number 14) x (64 addresses per subnet) = 896 addresses to be added to subnet zero.
- Convert **896** into a dotted-decimal value, that can be added to subnet zero, using Base-256 conversion.

Add the wildcard mask to the network address to get the broadcast address.