Converting to Base 256 from Decimal # To Convert a Decimal Number to a Base-256 dotted-decimal | octet, and | | |---|--| | • | | | tets. | | | | | | | | | | | | tet | | | | | | the next | | | | | | I form, with 4 | | | la a transaction and | | | Multiply the decimal portion of the result from step 2 by 256 Subtract the result of step 3 from the original decimal number to yield the Base-256 octet Examine the decimal portion of the result from step 2 a. If that decimal portion of the number is less than 256, then use that number for the next octet. Use zeroes for any remaining octets, so that the number is in dotted-decimal form, w octets. b. If that number is larger than, or equal to 256, then continue from step 2, using that number is larger. | | # Example 1 Find the last address in an IPv4 subnet with a network address of 16.0.0.0 /17, with 32,768 addresses per subnet. First, convert the number of addresses - 1 to Base 256 (dotted-decimal). 32,768 - 1 = 32,767Once the conversion is complete, add that Base 256 dotted-decimal value to the 1^{st} address to determine the last address in the subnet. First address in subnet 0 (the 1^{st} subnet): 16 . 0 . 0 . 0 Number of addresses (32,768 per subnet) -1 : 0 . 0 . 127 . 255 Last address in subnet 0: 16 . 0 . 127 . 255 Convert 32,767 to an IPv4 address. - 1. Is 32,767 larger than 256? Yes. Then proceed to step 2. - 2. 32,767 / 256 = **127**.996 - 3. 127 x 256 = 32,512 - 4. 32,767 32,512 = 255 (this is the 4th octet of the dotted-decimal) The 3rd Octet... 1. Since 127 is smaller than 256 you're done dividing and the value for the 3rd octet is 127 Using zeroes for any remaining octets yields a dotted-decimal value of: 0.0.127.255 The 255 is from step 3, and the 127 is what was left over. ### Example 2 Convert 2,215,708,686 to a Base-256 dotted-decimal IPv4 address. #### The 4th Octet is: - 1. 2,215,708,686 / 256 = 8,655,112.055 - 2. 8,655,112 x 256 = 2,215,708,672 - 3. 2,215,708,686 2,215,708,672 = 14 (So, 14 is the 4th octet) #### The 3rd Octet is: - 1. <mark>8,655,112</mark> / 256 = <mark>33,809</mark>.031 - 2. 33,809 x 256 = 8,655,104 - 3. 8,655,112 8,655,104 = 8 (So, the 3rd octet is 8) #### The 2nd Octet is: - 1. **33,809** / 256 = **132.066** - 2. 132 x256 = 33,792 - 3. 33,809 33,792 = 17 (So, the 2nd octet is 17) #### The 1st Octet is: 1. 132 is left over. Since 132 is too small to divide by 256, 132 is the 1st octet The result is: 2,215,708,686 = 132.17.8.14 #### Check | 132 x 256 ³ = | 2,214,592,512 | |--------------------------|---------------| | 17 x 256 ² = | 1,114,112 | | 8 x 256 ¹ = | 2,048 | | 14 x 256 ⁰ = | 14 | | | 2,215,708,686 | ### Example 3 Convert 1,024 to Base-256 #### The 4th Octet is: - 1. 1,024 / 256 = 4 - $2. 4 \times 256 = 1,024$ - 3. 1,024 1,024 = 0 (So, 0 is the 4th octet) #### The 3rd Octet is: • Since we're left with "4," and "4" is less than 256, we use "4" for the 3rd octet The result: 1,024 decimal is equal to 0.0.4.0 in Base-256 ### To Convert an IPv4 address to Decimal | 256 ³ | 256 ² | 256 ¹ | 256 ⁰ | |------------------|------------------|------------------|------------------| | 16,777,216 | 65,536 | 256 | 1 | | W | Х | У | Z | An IPv4 address is a 32-bit number. It is generally written in the "dotted quad" notation: w.x.y.z. To convert an IP address to base 10, calculate w*16,777,216 + x*65,536 + y*256 + z. http://www.everything2.com/e2node/Decimal%2520IP%2520address ### Example 1 In PHP, try ip2long(). HOW it's done. http://www.cre8asiteforums.com/forums/index.php?showtopic=47466 $256 ^0 = 1$ 256 ^ 1 = 256 256 ^ 2 = 65,536 256 ^ 3 = 16,777,216 So, 194.247.44.146 is ... 146 * 256^0 = 146 44 * 256^1 = 11,264 247*256^2 = 16,187,392 194*256^3 = 3,254,779,904 Add those up, and ... 146 + 11,264 + 16,187,392 + 3,254,779,904 = 3270978706 How do you go backwards on 3270978706 to get 194.247.44.146? Begin by dividing by 256³ and count the number of times you can do this. Take the remainder and do the same with 256², 256¹ and 256⁰. EG: 3270978706/256³ = 194 remainder: 16198802. # Example 2 http://www.everything2.com/e2node/Decimal%2520IP%2520address In UNIX, these are handled with inet_ntoa() and inet_aton(). To convert decimal IPs to normal dotted quad form (for example, to spoil spammers' joy), use this Perl hack: perl -MSocket -e "print inet_ntoa(pack('N','354267876296'));" Replace number accordingly. # Reference | Decode decimal IP address to | http://toastedspam.com/decodeip | |------------------------------------|---| | dotted quad | | | Convert and locate IP addresses | http://kloth.net/services/iplocate.php | | IPv4 Address Tutorial: Converting | http://countryipblocks.net/binary.php | | Octets to Binary and Decimal | | | How to Convert an IP Address to 10 | http://ezinearticles.com/?How-to-Convert-an-IP-Address-to-10- | | Digits Decimal Number | Digits-Decimal-Number&id=1716788 | | Decimal IP Address | http://www.everything2.com/e2node/Decimal%2520IP%2520address | | URL Discombobulator | http://www.karenware.com/powertools/ptlookup.asp | | Search for: convert decimal to ip | |