Converting to Base 256 from Decimal

To Convert a Decimal Number to a Base-256 dotted-decimal

octet, and	
•	
tets.	
tet	
the next	
I form, with 4	
la a transaction and	
 Multiply the decimal portion of the result from step 2 by 256 Subtract the result of step 3 from the original decimal number to yield the Base-256 octet Examine the decimal portion of the result from step 2 a. If that decimal portion of the number is less than 256, then use that number for the next octet. Use zeroes for any remaining octets, so that the number is in dotted-decimal form, w octets. b. If that number is larger than, or equal to 256, then continue from step 2, using that number is larger. 	

Example 1

Find the last address in an IPv4 subnet with a network address of 16.0.0.0 /17, with 32,768 addresses per subnet.

First, convert the number of addresses - 1 to Base 256 (dotted-decimal). 32,768 - 1 = 32,767Once the conversion is complete, add that Base 256 dotted-decimal value to the 1^{st} address to determine the last address in the subnet.

First address in subnet 0 (the 1^{st} subnet): 16 . 0 . 0 . 0 Number of addresses (32,768 per subnet) -1 : 0 . 0 . 127 . 255 Last address in subnet 0: 16 . 0 . 127 . 255

Convert 32,767 to an IPv4 address.

- 1. Is 32,767 larger than 256? Yes. Then proceed to step 2.
- 2. 32,767 / 256 = **127**.996
- 3. 127 x 256 = 32,512
- 4. 32,767 32,512 = 255 (this is the 4th octet of the dotted-decimal)

The 3rd Octet...

1. Since 127 is smaller than 256 you're done dividing and the value for the 3rd octet is 127

Using zeroes for any remaining octets yields a dotted-decimal value of: 0.0.127.255 The 255 is from step 3, and the 127 is what was left over.

Example 2

Convert 2,215,708,686 to a Base-256 dotted-decimal IPv4 address.

The 4th Octet is:

- 1. 2,215,708,686 / 256 = 8,655,112.055
- 2. 8,655,112 x 256 = 2,215,708,672
- 3. 2,215,708,686 2,215,708,672 = 14 (So, 14 is the 4th octet)

The 3rd Octet is:

- 1. <mark>8,655,112</mark> / 256 = <mark>33,809</mark>.031
- 2. 33,809 x 256 = 8,655,104
- 3. 8,655,112 8,655,104 = 8 (So, the 3rd octet is 8)

The 2nd Octet is:

- 1. **33,809** / 256 = **132.066**
- 2. 132 x256 = 33,792
- 3. 33,809 33,792 = 17 (So, the 2nd octet is 17)

The 1st Octet is:

1. 132 is left over. Since 132 is too small to divide by 256, 132 is the 1st octet

The result is: 2,215,708,686 = 132.17.8.14

Check

132 x 256 ³ =	2,214,592,512
17 x 256 ² =	1,114,112
8 x 256 ¹ =	2,048
14 x 256 ⁰ =	14
	2,215,708,686

Example 3

Convert 1,024 to Base-256

The 4th Octet is:

- 1. 1,024 / 256 = 4
- $2. 4 \times 256 = 1,024$
- 3. 1,024 1,024 = 0 (So, 0 is the 4th octet)

The 3rd Octet is:

• Since we're left with "4," and "4" is less than 256, we use "4" for the 3rd octet

The result: 1,024 decimal is equal to 0.0.4.0 in Base-256

To Convert an IPv4 address to Decimal

256 ³	256 ²	256 ¹	256 ⁰
16,777,216	65,536	256	1
W	Х	У	Z

An IPv4 address is a 32-bit number. It is generally written in the "dotted quad" notation: w.x.y.z. To convert an IP address to base 10, calculate w*16,777,216 + x*65,536 + y*256 + z.

http://www.everything2.com/e2node/Decimal%2520IP%2520address

Example 1

In PHP, try ip2long().

HOW it's done.

http://www.cre8asiteforums.com/forums/index.php?showtopic=47466

 $256 ^0 = 1$

256 ^ 1 = 256

256 ^ 2 = 65,536

256 ^ 3 = 16,777,216

So, 194.247.44.146 is ...

146 * 256^0 = 146

44 * 256^1 = 11,264

247*256^2 = 16,187,392

194*256^3 = 3,254,779,904

Add those up, and ...

146 + 11,264 + 16,187,392 + 3,254,779,904 = 3270978706

How do you go backwards on 3270978706 to get 194.247.44.146?

Begin by dividing by 256³ and count the number of times you can do this. Take the remainder and do the same with 256², 256¹ and 256⁰.

EG: 3270978706/256³ = 194 remainder: 16198802.

Example 2

http://www.everything2.com/e2node/Decimal%2520IP%2520address

In UNIX, these are handled with inet_ntoa() and inet_aton().

To convert decimal IPs to normal dotted quad form (for example, to spoil spammers' joy), use this Perl hack:

perl -MSocket -e "print inet_ntoa(pack('N','354267876296'));"

Replace number accordingly.

Reference

Decode decimal IP address to	http://toastedspam.com/decodeip
dotted quad	
Convert and locate IP addresses	http://kloth.net/services/iplocate.php
IPv4 Address Tutorial: Converting	http://countryipblocks.net/binary.php
Octets to Binary and Decimal	
How to Convert an IP Address to 10	http://ezinearticles.com/?How-to-Convert-an-IP-Address-to-10-
Digits Decimal Number	Digits-Decimal-Number&id=1716788
Decimal IP Address	http://www.everything2.com/e2node/Decimal%2520IP%2520address
URL Discombobulator	http://www.karenware.com/powertools/ptlookup.asp
Search for: convert decimal to ip	